Elettra-Sincrotrone Trieste S.C.p.A. website uses session cookies which are required for users to navigate appropriately and safely. Session cookies created by the Elettra-Sincrotrone Trieste S.C.p.A. website navigation do not affect users' privacy during their browsing experience on our website, as they do not entail processing their personal identification data. Session cookies are not permanently stored and indeed are cancelled when the connection to the Elettra-Sincrotrone Trieste S.C.p.A. website is terminated.
More info

Free Electron Laser

The FERMI single pass Free Electron Laser (FEL) lightsource at Elettra - Sincrotrone Trieste is the international user facility for scientific investigations in Italy employing ultra high brilliance X-ray pulses. The FEL design is based on an external seeding scheme that improves the output pulse coherence, central wavelength control and spectral bandwidth. The FEL output is tunable in power, wavelength, temporal duration, and polarization.

FEL 1: A seeded, one-stage harmonic upshift FEL

The seeding scheme by which FEL-1 line produces coherent output radiation down to 20 nm wavelength, is the following: An initial seed signal, provided by a conventional, high peak power, pulsed laser operating at 260 nm at the electron bunches repetition frequency, is temporally synchronized to overlap the electron beam, produced by the linac accelerator, in a first undulator section called the modulator (MOD). The laser field modulates the transversely wiggling electron bunch energy at its own frequency. This energy modulation is then converted to bunch charge spatial density modulation by passing the electrons through a chromatic dispersive section.
The resultant density modulation contains higher harmonics of the seed laser wavelength. A subsequent sect of undulator sections, named the radiators (RAD), is tuned in magnetic strength so that intense, coherent FEL radiation at a wavelength corresponding to one of these harmonics is emitted and then amplified to a high peak power level. The temporal duration of the FEL radiation is derived from that of the seed laser and the polarization properties are given by the radiator undulators.

The benefits of a Seeded FEL come from the control by the seed laser of the electron distribution within a bunch:

  • Very high peak flux (comparable to SASE FELs) and higher 6D brightness.
  • Temporal and transverse coherence of the FEL pulse.
  • Control of the time duration, polarization, wavelength and bandwidth of the coherent FEL pulse.
  • Close to transform-limit pulses provide excellent resolving power without monochromators.
  • Natural synchronization of the FEL pulse to the seed laser.
  • Reduction in undulator length needed to achieve saturation as compared to starting from noise as in SASE FELs.

FEL 2: A two-stage FEL employing a HGHG cascade

In order to be able to reach a final shorter wavelength range (from 20 to 4 nm) still starting from a seed laser at UV wavelength, FEL-2 is based on a double cascade of high gain harmonic generation (HGHG). The first stage is very similar to the FEL-1 configuration (with a shorter radiator) while the second stage modulator is tuned to use output from the first stage radiator, again modulate the electron beam in energy and density, and then produce coherent radiation in the second stage radiator at a wavelength tuned to a harmonic of the first stages output. Altogether then, the output wavelength of the second stage has been upshifted twice (once in each stage) from the wavelength of the input, external laser seed. FEL-2 also utilizes a magnetic delay line between its two stages in order to improve the FEL performance of the second stage by using the so-called "fresh bunch" technique.

More information can be read in the Conceptual Design Report.

Back to Machine Page

Last Updated on Monday, 10 December 2018 14:29